67 research outputs found

    Artificial intelligence surgery: how do we get to autonomous actions in surgery?

    Get PDF
    Most surgeons are skeptical as to the feasibility of autonomous actions in surgery. Interestingly, many examples of autonomous actions already exist and have been around for years. Since the beginning of this millennium, the field of artificial intelligence (AI) has grown exponentially with the development of machine learning (ML), deep learning (DL), computer vision (CV) and natural language processing (NLP). All of these facets of AI will be fundamental to the development of more autonomous actions in surgery, unfortunately, only a limited number of surgeons have or seek expertise in this rapidly evolving field. As opposed to AI in medicine, AI surgery (AIS) involves autonomous movements. Fortuitously, as the field of robotics in surgery has improved, more surgeons are becoming interested in technology and the potential of autonomous actions in procedures such as interventional radiology, endoscopy and surgery. The lack of haptics, or the sensation of touch, has hindered the wider adoption of robotics by many surgeons; however, now that the true potential of robotics can be comprehended, the embracing of AI by the surgical community is more important than ever before. Although current complete surgical systems are mainly only examples of tele-manipulation, for surgeons to get to more autonomously functioning robots, haptics is perhaps not the most important aspect. If the goal is for robots to ultimately become more and more independent, perhaps research should not focus on the concept of haptics as it is perceived by humans, and the focus should be on haptics as it is perceived by robots/computers. This article will discuss aspects of ML, DL, CV and NLP as they pertain to the modern practice of surgery, with a focus on current AI issues and advances that will enable us to get to more autonomous actions in surgery. Ultimately, there may be a paradigm shift that needs to occur in the surgical community as more surgeons with expertise in AI may be needed to fully unlock the potential of AIS in a safe, efficacious and timely manner

    Treatment of type II endoleak with a transcatheter transcaval approach: Results at 1-year follow-up

    Get PDF
    PurposeThis study assessed the feasibility and mid-term outcomes in the treatment of type II endoleak using transcatheter transcaval embolization (TTE).MethodsDuring an 8-month period, 12 patients underwent TTE. After direct transcaval puncture of the aneurysm sac, embolization was performed by injecting thrombin and placing coils. Systemic and intrasac pressures were recorded throughout the entire procedure. Computed tomography (CT) scans were performed at 24 hours, 30 days, 6 months, and 1 year after TTE to evaluate endoleaks and changes in sac diameter. Technical success was defined as the feasibility of the procedure; clinical success was defined as no evidence of leaks during the follow-up evaluation.ResultsTTE was feasible in 11 of 12 patients (technical success 92%). The mean systemic pressure was 117 mm Hg. The mean intrasac pressure before embolization was 75 mm Hg (range, 39 to 125 mm Hg), 16.5 mm Hg (range, 7 to 40 mm Hg) in 10 patients after embolization, and it increased in one patient. CT scans at 24 hours showed stable contrast medium inside the sac in 10 patients. Only minor complications were observed during follow-up. At the 1-year follow-up, no recurrence of leaks was noted, and sac diameter was reduced in 10 of 11 patients. As a result, TTE clinical success was obtained in 10 (83%) of 12 patients.ConclusionTTE appears to be a feasible technique for the complete exclusion of type II endoleaks. Technical and clinical successes are comparable with other treatment strategies, and TTE should be considered an alternative to direct translumbar puncture of the aneurysm sac

    Knowledge, attitude, and practice of artificial intelligence in emergency and trauma surgery, the ARIES project : an international web-based survey

    Get PDF
    Aim We aimed to evaluate the knowledge, attitude, and practices in the application of AI in the emergency setting among international acute care and emergency surgeons. Methods An online questionnaire composed of 30 multiple choice and open-ended questions was sent to the members of the World Society of Emergency Surgery between 29th May and 28th August 2021. The questionnaire was developed by a panel of 11 international experts and approved by the WSES steering committee. Results 200 participants answered the survey, 32 were females (16%). 172 (86%) surgeons thought that AI will improve acute care surgery. Fifty surgeons (25%) were trained, robotic surgeons and can perform it. Only 19 (9.5%) were currently performing it. 126 (63%) surgeons do not have a robotic system in their institution, and for those who have it, it was mainly used for elective surgery. Only 100 surgeons (50%) were able to define different AI terminology. Participants thought that AI is useful to support training and education (61.5%), perioperative decision making (59.5%), and surgical vision (53%) in emergency surgery. There was no statistically significant difference between males and females in ability, interest in training or expectations of AI (p values 0.91, 0.82, and 0.28, respectively, Mann-Whitney U test). Ability was significantly correlated with interest and expectations (p < 0.0001 Pearson rank correlation, rho 0.42 and 0.47, respectively) but not with experience (p = 0.9, rho - 0.01). Conclusions The implementation of artificial intelligence in the emergency and trauma setting is still in an early phase. The support of emergency and trauma surgeons is essential for the progress of AI in their setting which can be augmented by proper research and training programs in this area.Peer reviewe

    Immune evolution from preneoplasia to invasive lung adenocarcinomas and underlying molecular features

    Get PDF
    The mechanism by which anti-cancer immunity shapes early carcinogenesis of lung adenocarcinoma (ADC) is unknown. In this study, we characterize the immune contexture of invasive lung ADC and its precursors by transcriptomic immune profiling, T cell receptor (TCR) sequencing and multiplex immunofluorescence (mIF). Our results demonstrate that anti-tumor immunity evolved as a continuum from lung preneoplasia, to preinvasive ADC, minimally-invasive ADC and frankly invasive lung ADC with a gradually less effective and more intensively regulated immune response including down-regulation of immune-activation pathways, up-regulation of immunosuppressive pathways, lower infiltration of cytotoxic T cells (CTLs) and anti-tumor helper T cells (Th), higher infiltration of regulatory T cells (Tregs), decreased T cell clonality, and lower frequencies of top T cell clones in later-stages. Driver mutations, chromosomal copy number aberrations (CNAs) and aberrant DNA methylation may collectively impinge host immune responses and facilitate immune evasion, promoting the outgrowth of fit subclones in preneoplasia into dominant clones in invasive ADC

    The Brescia Internationally Validated European Guidelines on Minimally Invasive Pancreatic Surgery (EGUMIPS)

    Get PDF
    Objective: To develop and update evidence-based and consensus-based guidelines on laparoscopic and robotic pancreatic surgery. Summary Background Data: Minimally invasive pancreatic surgery (MIPS), including laparoscopic and robotic surgery, is complex and technically demanding. Minimizing the risk for patients requires stringent, evidence-based guidelines. Since the International Miami Guidelines on MIPS in 2019, new developments and key publications have been reported, necessitating an update. Methods: Evidence-based guidelines on 22 topics in 8 domains were proposed: terminology, indications, patients, procedures, surgical techniques and instrumentation, assessment tools, implementation and training, and artificial intelligence. The Brescia Internationally Validated European Guidelines on Minimally Invasive Pancreatic Surgery (EGUMIPS, September 2022) used the Scottish Intercollegiate Guidelines Network (SIGN) methodology to assess the evidence and develop guideline recommendations, the Delphi method to establish consensus on the recommendations among the Expert Committee, and the AGREE II-GRS tool for guideline quality assessment and external validation by a Validation Committee. Results: Overall, 27 European experts, 6 international experts, 22 international Validation Committee members, 11 Jury Committee members, 18 Research Committee members, and 121 registered attendees of the 2-day meeting were involved in the development and validation of the guidelines. In total, 98 recommendations were developed, including 33 on laparoscopic, 34 on robotic, and 31 on general MIPS, covering 22 topics in 8 domains. Out of 98 recommendations, 97 reached at least 80% consensus among the experts and congress attendees, and all recommendations were externally validated by the Validation Committee. Conclusions: The EGUMIPS evidence-based guidelines on laparoscopic and robotic MIPS can be applied in current clinical practice to provide guidance to patients, surgeons, policy-makers, and medical societies.</p

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p &lt; 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)

    The Advances in Computer Vision That Are Enabling More Autonomous Actions in Surgery: A Systematic Review of the Literature

    No full text
    This is a review focused on advances and current limitations of computer vision (CV) and how CV can help us obtain to more autonomous actions in surgery. It is a follow-up article to one that we previously published in Sensors entitled, &ldquo;Artificial Intelligence Surgery: How Do We Get to Autonomous Actions in Surgery?&rdquo; As opposed to that article that also discussed issues of machine learning, deep learning and natural language processing, this review will delve deeper into the field of CV. Additionally, non-visual forms of data that can aid computerized robots in the performance of more autonomous actions, such as instrument priors and audio haptics, will also be highlighted. Furthermore, the current existential crisis for surgeons, endoscopists and interventional radiologists regarding more autonomy during procedures will be discussed. In summary, this paper will discuss how to harness the power of CV to keep doctors who do interventions in the loop
    corecore